If it's not what You are looking for type in the equation solver your own equation and let us solve it.
800-16t^2=0
a = -16; b = 0; c = +800;
Δ = b2-4ac
Δ = 02-4·(-16)·800
Δ = 51200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{51200}=\sqrt{25600*2}=\sqrt{25600}*\sqrt{2}=160\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-160\sqrt{2}}{2*-16}=\frac{0-160\sqrt{2}}{-32} =-\frac{160\sqrt{2}}{-32} =-\frac{5\sqrt{2}}{-1} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+160\sqrt{2}}{2*-16}=\frac{0+160\sqrt{2}}{-32} =\frac{160\sqrt{2}}{-32} =\frac{5\sqrt{2}}{-1} $
| 13x=52x= | | -2-16=x+23 | | 3(4^x)=24 | | 92=-4(1+4p) | | 30x^2+20x=32x^2-60x | | -43+4x=-x+27 | | 146=-5(-8-3a)+1 | | n+2/3=25/6 | | c3+ 5=8 | | -5(a+6)=4a-31 | | 9v=-162 | | -37-5x=2x+61 | | r-2.6=3.5r= | | i+5.7=14.6 | | –5=1−3c | | -4=2w-12 | | x/3=11.1 | | 4200-3000m=12 | | y=-3/2+15 | | 7×+2=3x+10 | | z+12=37z= | | 7(3-4n)=217 | | 9f=72f= | | 25.9-3x=25.6 | | m-13=28m= | | 3n-7=9-5n | | n+n+n+n+n=1.75 | | 25°+30°+x=130 | | x÷15=45 | | 180=7x-4=4x+14=180 | | 10/16=5÷n+2 | | (6x+10)+(3x+2)=6x+12 |